Asymptotic analysis and analytical solutions of a model of cardiac excitation.
نویسندگان
چکیده
We describe an asymptotic approach to gated ionic models of single-cell cardiac excitability. It has a form essentially different from the Tikhonov fast-slow form assumed in standard asymptotic reductions of excitable systems. This is of interest since the standard approaches have been previously found inadequate to describe phenomena such as the dissipation of cardiac wave fronts and the shape of action potential at repolarization. The proposed asymptotic description overcomes these deficiencies by allowing, among other non-Tikhonov features, that a dynamical variable may change its character from fast to slow within a single solution. The general asymptotic approach is best demonstrated on an example which should be both simple and generic. The classical model of Purkinje fibers (Noble in J. Physiol. 160:317-352, 1962) has the simplest functional form of all cardiac models but according to the current understanding it assigns a physiologically incorrect role to the Na current. This leads us to suggest an "Archetypal Model" with the simplicity of the Noble model but with a structure more typical to contemporary cardiac models. We demonstrate that the Archetypal Model admits a complete asymptotic solution in quadratures. To validate our asymptotic approach, we proceed to consider an exactly solvable "caricature" of the Archetypal Model and demonstrate that the asymptotic of its exact solution coincides with the solutions obtained by substituting the "caricature" right-hand sides into the asymptotic solution of the generic Archetypal Model. This is necessary, because, unlike in standard asymptotic descriptions, no general results exist which can guarantee the proximity of the non-Tikhonov asymptotic solutions to the solutions of the corresponding detailed ionic model.
منابع مشابه
Asymptotic Analysis of Binary Gas Mixture Separation by Nanometric Tubular Ceramic Membranes: Cocurrent and Countercurrent Flow Patterns
Analytical gas-permeation models for predicting the separation process across membranes (exit compositions and area requirement) constitutes an important and necessary step in understanding the overall performance of membrane modules. But, the exact (numerical) solution methods suffer from the complexity of the solution. Therefore, solutions of nonlinear ordinary differential equations th...
متن کاملPermanence and Uniformly Asymptotic Stability of Almost Periodic Positive Solutions for a Dynamic Commensalism Model on Time Scales
In this paper, we study dynamic commensalism model with nonmonotic functional response, density dependent birth rates on time scales and derive sufficient conditions for the permanence. We also establish the existence and uniform asymptotic stability of unique almost periodic positive solution of the model by using Lyapunov functional method.
متن کاملInitiation Of Excitation Waves
The thesis considers analytical approaches to the problem of initiation of excitation waves. An excitation wave is a threshold phenomenon. If the initial perturbation is below the threshold, it decays; if it is large enough, it triggers propagation of a wave, and then the parameters of the generated wave do not depend on the details of the initial conditions. The problem of initiation of excita...
متن کاملSize-Dependent Forced Vibration Analysis of Three Nonlocal Strain Gradient Beam Models with Surface Effects Subjected to Moving Harmonic Loads
The forced vibration behaviors are examined for nonlocal strain gradient nanobeams with surface effects subjected to a moving harmonic load travelling with a constant velocity in terms of three beam models namely, the Euler-Bernoulli, Timoshenko and modified Timoshenko beam models. The modification for nonlocal strain gradient Timoshenko nanobeams is exerted to the constitutive equations by exc...
متن کاملInstabilities in an asymptotic model of cardiac excitation
We outline the regions in the parameter space of a model of cardiac excitation where normal 1:1 response, alternans 2:2 response and further instabilities occur during repeated stimulation with a dynamic restitution pacing protocol. To this end we consider a version of the classical model of Purkinje fibers (Noble, J. Physiol. 160:317, 1962) simplified by a well-justified asymptotic embedding a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bulletin of mathematical biology
دوره 70 2 شماره
صفحات -
تاریخ انتشار 2008